

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A MULTILEVEL SECURE CONSTRAINED INTRUSION
DETECTION SYSTEM PROTOTYPE

by

Kah Kin Ang

December 2010

 Thesis Co-Advisors: Cynthia E. Irvine
 Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
A Multilevel Secure Constrained Intrusion Detection System Prototype
6. AUTHOR(S) Kah Kin Ang

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DSTA

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number: N.A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT

The Monterey Security Architecture (MYSEA) provides a distributed multilevel secure (MLS) environment
consisting of a MLS local area network (LAN) and multiple single-level networks. The MYSEA server
enforces a mandatory access control policy to ensure that users can only access data for which they are
authorized. Intrusion detection systems (IDS) placed on a single-level network can store the alerts in the
IDS databases at the same classification level as the network being monitored. As most databases do not
support the enforcement of mandatory security policies, access to these databases is restricted to single-
level access only. Thus, administrators are not presented with a coherent view of IDS alerts from all of the
connected networks.

 The objective of this thesis is to design a database proxy to allow administrators to view and
analyze IDS information at multiple classification levels while enforcing the systems overall mandatory
policy. Based on the derived concept of operations and the requirements, a design for the database proxy
that mediates access to databases at different levels was conceived. A prototype database proxy was
implemented along with modifications to a web-based analysis tool to allow the viewing and analysis of IDS
information at multiple classification levels.

15. NUMBER OF
PAGES

117

14. SUBJECT TERMS
Intrusion Detection Systems (IDS), Information Assurance (IA), Monterey Security
Architecture (MYSEA), Database Proxy

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A MULTILEVEL SECURE CONSTRAINED INTRUSION DETECTION SYSTEM
PROTOTYPE

Kah Kin Ang
Civilian, Naval Postgraduate School

B.Eng., Nanyang Technological University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Kah Kin Ang

Approved by: Cynthia E. Irvine, PhD
Thesis Co-Advisor

Thuy D. Nguyen
Thesis Co-Advisor

Peter J. Denning, PhD
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Monterey Security Architecture (MYSEA) provides a distributed multilevel

secure (MLS) environment consisting of a MLS local area network (LAN) and

multiple single-level networks. The MYSEA server enforces a mandatory access

control policy to ensure that users can only access data for which they are

authorized. Intrusion detection systems (IDS) placed on a single-level network

can store the alerts in the IDS databases at the same classification level as the

network being monitored. As most databases do not support the enforcement of

mandatory security policies, access to these databases is restricted to single-

level access only. Thus, administrators are not presented with a coherent view of

IDS alerts from all of the connected networks.

 The objective of this thesis is to design a database proxy to allow

administrators to view and analyze IDS information at multiple classification

levels while enforcing the systems overall mandatory policy. Based on the

derived concept of operations and the requirements, a design for the database

proxy that mediates access to databases at different levels was conceived. A

prototype database proxy was implemented along with modifications to a web-

based analysis tool to allow the viewing and analysis of IDS information at

multiple classification levels.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. MOTIVATION... 1
B. PURPOSE OF STUDY... 2
C. ORGANIZATION OF THESIS.. 2

II. BACKGROUND.. 5
A. MYSEA ENVIRONMENT OVERVIEW... 5

1. Overview... 5
2. STOP 7 Operating System (OS).. 6

B. INTRUSION DETECTION SYSTEMS (IDS)... 7
1. Overview of an IDS .. 7
2. Snort ... 8
3. Suricata .. 9

C. IDS ANALYSIS TOOLS... 10
1. Overview of IDS Analysis Tools ... 10
2. Basic Security Analysis Engine (BASE) 10

D. SQL PROXIES ... 11
1. Overview of SQL Proxies .. 11
2. PGPool-II... 11
3. SQL Relay and PL/Proxy... 12

E. SUMMARY... 13

III. REQUIREMENTS AND DESIGN.. 15
A. INTRODUCTION.. 15
B. CONCEPT OF OPERATION.. 15

1. Database Proxy.. 15
2. BASE... 15

C. ARCHITECTURAL SECURITY ANALYSIS....................................... 16
D. REQUIREMENTS... 17

1. Proxy Top-Level Requirements .. 17
2. BASE Top-Level Requirements .. 18

E. DATABASE PROXY SELECTION CRITERIA................................... 19
1. General Requirements .. 19
2. Selection Criteria ... 19

a. Ranking Platform Compatibility................................. 19
b. Ranking of Proxy Minimality 20
c. Ranking Support and Documentation....................... 20

3. Selection Process.. 21
4. Selection Outcome .. 21

F. DESIGN.. 21
1. PGPool-II... 22
2. BASE... 25

G. SUMMARY... 27

 viii

IV. IMPLEMENTATION.. 29
A. OVERVIEW .. 29
B. DEVELOPMENT ENVIRONMENT... 29
C. IMPLEMENTATION DETAILS... 29

1. PGPool-II on Fedora 12 ... 30
2. PGPool-II on MYSEA ... 31
3. BASE on STOP 7.. 35

D. PROBLEMS ENCOUNTERED .. 40
1. Issues With Current Implementation 40
2. Solved Issues... 40

E. SUMMARY... 42

V. TESTING... 43
A. OVERVIEW .. 43
B. DEVELOPMENTAL TESTING... 44

1. PGPool-II Test Plan.. 44
2. BASE Test Plan.. 46

C. DEVELOPMENTAL TESTING RESULTS ... 50
D. ACCEPTANCE TESTING .. 51
E. ACCEPTANCE TEST RESULTS... 52
F. SUMMARY... 53

VI. CONCLUSION.. 55
A. FUTURE WORK... 55

1. PGPool-II... 55
2. BASE Event Cache .. 56
3. BASE Advisory Labels .. 57
4. IDS Improvements ... 57

B. CONCLUSION ... 58

APPENDIX A. SOURCE CODE LISTING .. 59

APPENDIX B. INSTALLATION PROCEDURES.. 61
A. PGPOOL-II INSTALLATION ON FEDORA 12 61

1. PostgreSQL Installation .. 61
2. PGPool-II Installation... 62

B. PGPOOL-II AND BASE INSTALLATION ON STOP 7 65
1. MYSEA Server Setup... 65
2. BASE Installation... 66

APPENDIX C. TEST PROCEDURES... 69
A. PGPOOL-II TEST PROCEDURES... 72
B. BASE TEST PROCEDURES ... 77
C. ACCEPTANCE TEST PROCEDURES .. 83

APPENDIX D. TEST RESULTS ... 87
A. DEVELOPMENT TEST RESULTS .. 87

1. PGPool-II Test Results .. 87
2. BASE Test Results .. 88

 ix

B. ACCEPTANCE TEST RESULTS... 91

LIST OF REFERENCES.. 93

INITIAL DISTRIBUTION LIST ... 95

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. MYSEA environment .. 6
Figure 2. IPS and IDS placement .. 9
Figure 3. Concept of operations .. 16
Figure 4. Database (PGPool-II) implementation design 22
Figure 5. New user interface design .. 25
Figure 6. Design of BASE displaying data with two security levels.................... 26
Figure 7. System setup with Fedora 12 ... 30
Figure 8. PGPool-II startup.. 32
Figure 9. PGPool-II to database connection.. 33
Figure 10. PGPool-II query request ... 34
Figure 11. BASE header display.. 35
Figure 12. BASE displaying data with two security levels.................................... 37
Figure 13. BASE header logic ... 38
Figure 14. BASE data presentation logic... 39
Figure 15. BASE event cache.. 41
Figure 16. Test setup... 43
Figure 17. BASE test setup ... 49
Figure 18. PGPool-II setup on Fedora 12.. 61
Figure 19. Detailed test setup.. 69

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. PGPool-II features. From [13]... 12
Table 2. Selection criteria for database proxy .. 21
Table 3. Test cases for PGPool-II .. 45
Table 4. Exception test case for PGPool-II... 46
Table 5. BASE test cases... 48
Table 6. Test cases for BASE without proxy .. 50
Table 7. Acceptance test cases.. 52
Table 8. Additional field to BASE event cache table... 56

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

BASE Basic Security Analysis Engine

BLP Bell-LaPadula

COTS Commercial Off-the-Shelf

DAC Discretionary Access Control

IDS Intrusion Detection System

MAC Mandatory Access Control

MLS Multilevel Secure

MYSEA Monterey Security Architecture

SSS Secure Session Server

STOP Secure Trusted Operating Program

TCM Trusted Communications Module

TPE Trusted Path Server

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to express my gratitude to both my advisors, Dr Cynthia Irvine

and Thuy Nguyen, for their invaluable help and guidance throughout the entire

course of this thesis. I would also like to thank Jean Khosalim for his help and

technical assistance and Philip Hopfner for configuring and setting up the

machines used for this thesis. Finally, I would like to thank my sponsors, Defence

Science & Technology Agency (DSTA), for sending me to this course.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Most databases are typically untrusted and do not support the

enforcement of mandatory security policies. Once a connection has been

established to a database, a user is allowed to read and write to it. For multilevel

secure (MLS) systems that implement the Bell-LaPadula (BLP) security model

[1], this behavior presents an access control problem. Specifically, the user is

allowed to read data classified at and below his security level (no read-up).

However, he is only allowed to write data at his security level and above it (no

write-down). This presents a problem because once a user connects to a

database classified below his security level, he has both read and write access.

This is inconsistent with the BLP security model that is implemented in the

MYSEA environment [2].

The Intrusion Detection System (IDS) in the MYSEA environment is

deployed on multiple single-level networks. When Snort, which is IDS used in the

MYSEA environment, raises an alert about a possible intrusion, a database client

will write the alert into the database with the confidentiality level that is the same

as that of the network. The Basic Security Analysis Tool (BASE), an open

source web-based application, is then used to analyze the IDS data in the

database [3]. As currently organized, both read and write access to the database

that stores the intrusion detection records is required. This means that each

instance of BASE is restricted to only read and analyze IDS data that is at its

current level of confidentiality and not below it. To provide a more coherent view

of the collected IDS data, the current IDS implementation in MYSEA must be

modified to allow a user to read IDS data at and below the user’s session level

and to only write the consolidated IDS report at the current session level.

 2

B. PURPOSE OF STUDY

The purpose of this thesis is to study and modify the existing MYSEA

implementation to allow the BASE application read access to data that is

classified below the level that the user is logged in. The following questions were

examined in this thesis.

1. Can a trusted mechanism be designed that will permit operators to

read intrusion detection information at multiple classification levels

while enforcing the system’s overall mandatory confidentiality policy?

2. The SQL database allows both read and write access when

connected. Can the designed trusted mechanism restrict write access

when a user at a higher security level connects to a database of a

lower security level?

To provide a structured approach for this thesis, the following

methodology is employed. The background of the existing implementation of the

MYSEA environment is studied and components relating to this thesis are

reviewed. The concept of operations and high-level requirements are developed

to guide the design. This design is then implemented to demonstrate its proof of

concept. The implementation is first conducted on a Linux-based system before

porting it to the MYSEA server running on XTS400 system [4]. Testing

methodologies are then employed in both developmental and acceptance testing

phases to verify the correctness of the implementation. The results of this thesis

project are intended allow the user logged in at a particular security level to read

from an IDS database of a lower or equal security level while preventing write

access to an IDS database of a lower security level.

C. ORGANIZATION OF THESIS

This thesis is organized as follows:

Chapter I presents the issues of accessing single-level databases in MLS

systems, which provides the motivation and purpose of this thesis.

 3

Chapter II provides some background information on the MYSEA

environment, IDS, IDS analysis tools and SQL proxies, that forms the basis of

this thesis.

Chapter III discusses the concept of operations that lead to the functional

requirements and the design of the database proxy prototype and the modified

IDS analysis tool, the Basic Analysis Security Engine (BASE). The selection

process of the open source database proxy for this thesis is also presented.

Chapter IV covers the implementation of the database proxy in two

phases. Phase 1 was first done on a Fedora 12 Linux system to gain familiarity

with the database proxy and to avoid issues with the STOP 7 operating system.

Phase 2 followed with the implementation of the database proxy prototype and

the modified BASE application on the XTS400 system running the STOP 7

operating system.

Chapter V describes the test plan for the implementation presented in

Chapter IV and the corresponding test results.

Chapter VI concludes the thesis with some possible future work on the

IDS and database prototype and conclusion to the work done in this thesis.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This chapter contains background information on the Monterey Security

Architecture (MYSEA), the Secure Trusted Operating Program (STOP) Version

7, Intrusion Detection Systems (IDS) and the Basic Analysis and Security Engine

(BASE).

A. MYSEA ENVIRONMENT OVERVIEW

This section covers an overview of the MYSEA environment as well as the

STOP 7 operating system, on which MYSEA runs.

1. Overview

MYSEA provides a distributed multilevel secure (MLS) operating

environment for the enforcement of mandatory security policies. It supports both

mandatory access control (MAC) and discretionary access control (DAC). It

consists of high-assurance components, such as the XTS400, which executes

the STOP operating system and low-assurance commercial off-the-shelf (COTS)

products. Figure 1 shows the layout of the MYSEA environment. The highly

trustworthy Trusted Path Extensions (TPEs) and Trusted Communications

Modules (TCMs) provide authentication and disambiguation for users and single

level networks [2]. The TPE provides the trusted path between the users and the

MYSEA servers, and provides a gateway between the COTS clients and the

trusted server, while the TCM mediates the access of single level networks to the

MYSEA servers. To support complex and adaptive operational environments,

dynamic changes to the security services may be required. As such, Dynamic

Security Services (DSS) mechanisms in MYSEA allow the modification of

protection attributes of IPSec tunnels and access to application services [5].

MYSEA relies on the XTS-400 trusted computing platform and the STOP

operating system to enforce the mandatory confidentiality and integrity access

control policies and in most cases, the discretionary policies as well. The MYSEA

 6

effort includes the construction of middleware services to support application

services and some of these middleware elements must be trusted. Application

services do not enforce MAC policy, but are constrained by the STOP

enforcement. However, some services, such as the Wiki [6], enforce the

application-specific DAC policy. The MYSEA approach allows for the

minimization of the number and the extent of trusted components to meet high

assurance requirements.

Figure 1. MYSEA environment

2. STOP 7 Operating System (OS)

The STOP 7 OS is the operating system used to power the XTS-400

trusted computing platform [4]. It enforces security policies based on the

following access control models: role-based access control (RBAC), Bell-

LaPadula (BLP) confidentiality model, Biba integrity model. These policies can be

used separately or together to enforce an enterprise security policy for data

protection. The version 7 of STOP OS provides an improvement on its

performance and flexibility over its previous versions.

 7

STOP 7 contains an auditing and system logging feature called “SLOG”

(System LOGger). This provides safeguards to minimize the loss of audit data in

the event of a system failure. STOP 7 also has additional capabilities for

cryptographic support and a stateful packet filtering firewall at the kernel-level.

These features allow the system to support security policy objectives and to be

deployed for use in networked environments.

B. INTRUSION DETECTION SYSTEMS (IDS)

This section provides an overview of IDS functionality and its limitations.

Two open source IDSes, Snort and Suricata are also discussed.

1. Overview of an IDS

Intrusion detection is the process of monitoring and analyzing system

behavior or traffic anomalies in the system or network for possible threats of

violation of computer security policies. An IDS is a device or software application

that performs this functionality by comparing the network traffic to known attack

signatures. If an attack is detected, the IDS will raise an alarm by generating an

alert. The IDS used in the MYSEA environment is Snort [7].

Two detection techniques are used by Snort to evaluate the network

packets. The first technique is a signature-based detection method. Signatures

are preconfigured and predetermined attack patterns based on unique lines of

code or strings. The IDS raises an alarm if the network packet contains data that

matches the signatures. These signatures have to be constantly updated to

mitigate new and emerging threats. The second method is a statistical anomaly-

based detection technique. Normal acceptable network traffic behavior is

evaluated and a baseline of normal activity is created. Any network traffic that

performs outside of this baseline is considered a possible attack and generates

an alert.

Both techniques have limitations and are susceptible to false positives and

false negatives. A false positive occurs when the IDS raises an alarm when no

 8

attack has taken place. In signature-based IDS, this may occur due to poorly

designed signatures. In anomaly-based IDS, this may be due to the inability to

provide a consistent performance baseline. A false negative occurs when an

actual attack has taken place but the IDS does not generate any alert. For a

signature-based IDS, this occurs when the signature for the attack is absent and

it can be mitigated by constantly updating the attack signatures. For anomaly-

based IDS, a false negative occurs if the intrusion activity is similar to normal

acceptable network traffic behavior. Other than testing the attacks against the

baseline profile and adjusting the baseline, it is difficult to mitigate the false

negatives for anomaly-based IDS.

The alerts generated by the IDS sensors are usually stored in flat log files

by default. These log files could potentially store millions of entries, which would

overwhelm the analyst performing the analysis. To overcome this problem, the

alerts are often stored in a central repository using relational databases such as

PostgreSQL or Microsoft MSSQL. Using relational databases makes it easier to

manipulate the data for analysis. In addition, the database products are usually

packages with management tools for replication, backup and recovery.

The next two sections provide a discussion of two IDSes: Snort and

Suricata. Snort currently is used in the MYSEA environment and has been

available for about 12 years. Suricata is a relatively new open source project that

aims to replace Snort as the IDS of choice.

2. Snort

Snort [7] is an open source network intrusion prevention and detection

system. An intrusion detection and prevention system (IDPS) is similar to an IDS

except that it is usually placed inline, as shown in Figure 2, and has the ability to

block detected incoming attacks. An inline IPS device usually sits in between the

network and the firewall. All packets entering and leaving the network will pass

through the IPS. Hence, the IPS is able to block detected incoming threats. An

IDS sits offline between the network and the firewall. The packets do not go

 9

through the IDS device. Hence, it is able to monitor and send out alerts if threats

are detected, but not block them. Snort was created by Martin Roesh as a packet

sniffer tool in 1998 [8]. It is now open source software and supported by Roesh’s

company, Sourcefire.

Figure 2. IPS and IDS placement

Snort’s threat prevention components consist of a packet classifier, an IP

defragmenter and a TCP reassembler, a portscan processor and a detection

engine [9]. The packet classifier determines which packets are inspected. The IP

defragmenter and TCP reassembler ensure that the packets are inspected in the

correct order. The portscan processor watches for portscans and the detection

engine performs protocol normalization, rule matching, and other detection

functions to identify threats.

When Snort detects a threat, it will write an alert to an alert log by default.

This alert logging can be configured to write to a syslog process or to a relational

database such as PostgreSQL or Windows MSSQL Server. It can also be

customized to write to unsupported databases or file formats.

3. Suricata

Suricata [10] is an open source IDS that provides support for the utilization

of Snort’s attack signatures. It was developed by the Open Information Security

 10

Foundation (OISF) and a beta version was released on 31 December 2009. An

advantage it has over Snort is that it supports multi-threading, which allows it to

concurrently inspect multiple network packets. This improves the chances of

detecting attack traffic. However, Suricata is still in the early phases of

development and its performance is still slower than that of Snort [10]. Currently,

it supports only a subset of the functionality offered by Snort. As such, Snort

remains the choice of IDS for the MYSEA environment.

C. IDS ANALYSIS TOOLS

1. Overview of IDS Analysis Tools

IDSs tend to generate large volumes of log data for the alerts detected in

the network. These log data allow analysts to understand the threats to the

network and to provide a better defense of their systems. However, the huge

volume of log data generated means that the analyst has to spend a large

amount of time sifting through the individual records to identify the threats and

attacks. IDS analysis tools help to alleviate this problem by automating some of

the log analysis. The analysis tool used in the MYSEA environment is the Basic

Analysis and Security Engine (BASE).

2. Basic Security Analysis Engine (BASE)

BASE [11] is a web-based interface written in PHP to analyze intrusions

detected by the Snort IDS System. It is also able to search and process

databases containing security events logged by different network monitoring

tools. BASE has the ability to graphically display both Layer-3 (network) and

Layer-4 (transport) data. Using parameters such as time, protocol, and

classification, graphs and statistics can be generated and displayed.

The latest version of BASE (version 1.4.5) does not have any new

features compared to the version (version 1.4.0) currently used in the MYSEA

environment. However, there have been some security updates and bug fixes

since the last version used in MYSEA. Currently, BASE is unable to display data

 11

from multiple databases in a single web browser instance. Multiple browser

instances have to be used to inspect and analyze information from multiple

databases.

Development for BASE 2 has also started on 13 Aug 2010 [12]. It is based

on the code from BASE 1.x and Analysis Console from Intrusion Databases

project. This application will be able to analyze the alerts from a Snort or Suricata

IDS system.

D. SQL PROXIES

The database used for MYSEA is PostgreSQL. The design presented in

this work will use a SQL proxy. This section introduces SQL proxies and a

particular proxy, PGPool-II.

1. Overview of SQL Proxies

SQL proxy services are processes that act as an intermediary between

clients and SQL databases. SQL proxy services are able to accept requests from

multiple clients, and forward them to the SQL servers. By doing so, all service

requests to the database appear to come from a single source. There are various

proxies, which perform different functions. For this project, PGPool-II will be used

as the database proxy and will be modified to become MLS aware. The reasons

for which PGPool-II was chosen are analyzed in the next chapter.

2. PGPool-II

PGPool-II is a proxy service that works between PostgreSQL servers and

a PostgreSQL database client [13]. In addition to forwarding requests, it also

provides the features shown in Table 1 [13].

 12

Feature Description

Connection Pooling PGPool-II saves connections to the PostgreSQL servers

and reuses them whenever a connection with the same

properties is requested. This reduces the connection

overhead.

Replication PGPool-II performs replication by creating a real-time

backup on two or more physical disks. This ensures that

the service can still continue in the event of disk failure.

Load Balancing PGPool-II utilizes the replication feature to reduce the

load on each PostgreSQL server. This is done by

distributing the SELECT queries among multiple

servers, improving throughput.

Parallel Query In this mode, data is distributed among multiple servers,

so that a single query can be executed on all servers

concurrently to reduce the overall execution time. A

separate database is required to store the rules on how

the data is distributed among the servers.

Table 1. PGPool-II features. From [13]

For this project, only the request-forwarding feature of the proxy is

required. However, it is anticipated that the features described in Table 1 will be

utilized to support federated database services in subsequent MYSEA releases.

3. SQL Relay and PL/Proxy

SQL Relay is a database proxy that provides persistent connection

pooling, proxying and load balancing on Linux and Unix systems [14]. It provides

services to speed up and enhance the scalability of database-driven web-based

 13

applications, distributing accessing to replicated databases and migrating

applications from one database to another.

PL/Proxy [15] is a database proxy that partitions databases and distributes

the data across the partitions. Because the data is distributed, queries can be

performed in parallel on several partitions to reduce the overall execution time.

Both proxies were evaluated together with PGPool-II for the purpose of

this thesis. The selection criteria and outcome are described in Section E of

Chapter III.

E. SUMMARY

Databases are not designed to support MLS systems, as the user is

allowed to both read and write once a connection is made. As such, database

proxies are required to mediate the connection between the user and the

database. The next chapter will cover the concept of operation, requirements and

design to illustrate the use of BASE and database proxies to mediate access to

the IDS databases.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. REQUIREMENTS AND DESIGN

A. INTRODUCTION

This chapter will cover the concept of operations for a system that uses a

database proxy to mediate the read and write operations to multiple IDS

databases, each of which contains information at a different confidentiality level.

B. CONCEPT OF OPERATION

1. Database Proxy

The database proxy must operate in a way that does not violate the

intended system policy. The intention of the database proxy is to allow a client to

read IDS data stored at security levels that the current session level of the client

dominates. It will also limit write access to only the security level that is equal to

the current session level. This will align the access policy of the databases with

the mandatory security policy enforced by STOP.

The BASE-native SQL client application will first send a SQL query to the

database proxy. The database proxy will then check the client’s current session

level to determine if the requested query should be allowed. If the client’s current

session level is equal to the security level of the database, then the client is

allowed to write to and read from the database. If the client’s current session

level is higher than the security level of the database, the client is only allowed to

read from the database. The database proxy will allow this read-only functionality

by filtering the SQL queries, and forwarding only the SELECT queries to the

lower level databases.

2. BASE

BASE will be modified to allow the clients to decide which databases they

want to access. However, only the allowable levels will be displayed to the users.

For example, if the client is logged in at SIM_SECRET, then the option to access

the SIM_SECRET or lower databases would be available. BASE will then

 16

establish a connection to the databases through the respective database proxies.

Figure 3 illustrates the concept of operations.

Figure 3. Concept of operations

BASE will also perform the consolidation of the reports if data from more

than one database is requested. It will do this by first querying the databases

through the respective database proxies, in the increasing order of security level.

The results would be consolidated by appending them in the order of the query

and displayed on the client. Each query must complete before the next query can

be issued.

An advisory label will be shown at the top of the clients’ display to inform

the user of his current session level. Labels will also be inserted at the start and

end of the data at each different security level. This will allow the user to clearly

distinguish information at different sensitivity levels.

C. ARCHITECTURAL SECURITY ANALYSIS

In the original IDS design [3], the session level of the user was transparent

to BASE. It was only able to connect to the database with the security label equal

to the current session level. However, in the current design, BASE would be have

BASE
(S)

PostgreSQL
(S)

DB Proxy
(S)

BASE
(U)

DB Proxy
(U)

PostgreSQL

(U)

XTS-400 running STOP

Client

Client

 17

knowledge of the current session level and the databases it is allowed to access.

Hence, some new threats to the system have to be addressed.

If the system was compromised, it might be possible for an adversary to

modify BASE to access databases that have a higher security level than the

current session level. Attempts to connect to those higher security level

databases through the respective database proxies would be successful if the

database proxy did not enforce the MAC policy. To mitigate this threat, the

database proxy will check the current session against the security level of the

database, and deny such attempts.

Another possible situation that could arise is that the adversary learns

about the existence of the database proxies. The adversary could then attempt to

connect BASE directly to the databases. However, the IP address and TCP ports

of the databases are configured for single level accesses only. For single level

accesses, only applications of that particular security level would be able to gain

access. As such, the adversary would not be able to gain access to databases

that are not equal to the current session level.

D. REQUIREMENTS

This section will cover the requirements to construct a working prototype

based on the concepts of operations discussed in Section B.

1. Proxy Top-Level Requirements

The database proxy has the following requirements:

• The proxy shall only connect to the IDS database at the same security

level at which the proxy runs. This connection shall be performed

every time a query is requested from a SQL client application.

• The proxy shall accept IDS queries from a SQL client application.

• The proxy shall verify the security level of the client application prior to

granting access to the IDS databases.

 18

• The proxy shall allow the client application to query IDS data from the

databases if the users’ session level dominates the security level of

the databases.

• The proxy shall deny the client application’s access to the database if

the current session level is lower than the database it is trying to

access.

• If the current session level of the client application is higher than the

security level of the database, the proxy shall filter the queries and

only forward the queries starting with the word SELECT. A read query

does not contain strings that will cause changes to the database. The

filtering shall be done by parsing the first word in the query string to

determine if it is associated with a read query. If no such word is

found, it is considered a write and the query shall be dropped.

• There shall be one instance of the database proxy per security level in

the system.

• The proxy shall keep a log of all requests.

2. BASE Top-Level Requirements

The BASE application has the following requirements:

• BASE shall display the security levels of the databases that it is

allowed to query based on the current session level.

• If multiple databases are queried, BASE shall consolidate and display

the results in a single web page.

• BASE shall query the allowed IDS database on behalf of an

authenticated user.

• On the completion of a query, BASE shall close the connection

request.

• BASE shall run at the authenticated users’ session level.

 19

There shall be at least one instance of the BASE application per client.

E. DATABASE PROXY SELECTION CRITERIA

To avoid building the database proxy from scratch, some open source

options for the proxy were examined. The general requirements and selection

criteria for the database proxy are discussed in this section.

1. General Requirements

The database proxy chosen must be able to mediate the connection and

query requests between the client and the database server. As such, it must

appear to the clients as the server and appear to the server as the client.

2. Selection Criteria

The selection criteria used to evaluate the database proxies are as

follows:

• Compatible with PostgreSQL: PostgreSQL is the database used in the

MYSEA environment. As such, the database proxy must be able to

support PostgreSQL.

• Open source: Only open source database proxies will be considered

for this thesis to avoid licensing costs. This is either a “Yes” or “No”

criterion.

• Platform compatibility: The database proxy should be compatible with

popular Linux-based operating systems such as Fedora and Red Hat.

It should also be compiled, installed and run on the STOP 7 operating

system without requiring major changes. The ranking for platform

compatibility is given below.

a. Ranking Platform Compatibility

1. Supports a minimal set of common operating systems

2. Supports some common operating systems

 20

3. Supports many common operating systems

4. Supports most common operating systems

• Minimality: The database proxy should contain the minimal

functionality required to support the proxy requirements (see section

D.1) without additional features that are not used by MYSEA. The

ranking for proxy minimality is given below.

b. Ranking of Proxy Minimality

1. Contains the required functionality with many unnecessary

features

2. Contains the required functionality with some unnecessary

features

3. Contains the required functionality with no unnecessary features

• User support and documentation: Open source programs are usually

not very well documented. That will cause difficulties when setting up

and configuring the database proxy. The ranking for the

documentation is given below.

c. Ranking Support and Documentation

1. Very little documentation, no user forums, tutorials or examples

2. Some documentation, has some user forums, no tutorials or

examples

3. Good documentation, has user forums, some tutorials or

examples

4. Good to excellent documentation, active user forums, several

clear tutorials or examples

 21

3. Selection Process

Three open source database proxies were identified for use in the MYSEA

environment. The comparison and selection criteria are summarized in Table 2.

Database
Proxy

PostgreSQL
Compliant

Open
Source

Platform
Compatibility

Mini-
mality

Support &
Documentation

PGPool-II 4 2 4

SQL

Relay

 4 1 4

PL/Proxy 4 2 4

Table 2. Selection criteria for database proxy

4. Selection Outcome

All the database proxies in Table 2 meet the general requirements and are

very close in the terms of their scores. However, while SQL Relay supports

multiple databases including PostgreSQL, it is mainly intended to support the

Oracle database. PGPool-II and PL/Proxy were both developed to support mainly

the PostgreSQL database, which is used in MYSEA. The PGPool-II and

PL/Proxy also have fewer features beyond those required for this thesis

compared to SQL Relay. While PGPool-II has more unnecessary features than

PL/Proxy for the purpose of this thesis, it is anticipated that these could be

utilized to support federated database services in the future. Based on these

considerations, PGPool-II is the choice for implementation as the database proxy

in this project.

F. DESIGN

This section covers the high-level design of the multilevel database proxy

using PGPool-II and the MLS-constrained BASE.

 22

1. PGPool-II

The “IDS read-down” concept of operations introduces a database proxy

service into the MYSEA environment. For this project, the database proxy is

implemented using the open source PGPool-II database middleware program.

The modified PGPool-II will ensure enforcement of the mandatory policy by

checking the current session level against the security level of the database each

time an access is requested. It will also filter out the write requests if the current

session level is not equal to the security level of the database. Figure 4 shows

the implementation design with PGPool-II as the database proxy.

Figure 4. Database (PGPool-II) implementation design

Whenever the user logged in at the SECRET level requests for

SIM_SECRET data from the IDS databases, the following occurs:

 23

1. The client sends a request to the TPE.

2. The request is sent through the TPE to the Secure Session Server

(SSS) Parent.

3. The SSS Parent first checks if the requesting client has an established

session by searching for a matching entry in the User Database. If no

entry is found, it then checks for a valid connection request by a

remote application in the MYSEA Remote Connections Database. If

the request is associated in either one of the two databases, an SSS

Child is then spawned to handle the request.

4. The SSS Child then launches the Web Server, which runs at the

current session level of the user or remote application.

5. The client invokes BASE through the TPE.

6. The SSS Child passes the request to the web server, which then

executes BASE.

7. As BASE is untrusted, it is not given access to the MLS interface and

must rely on the SSS Child that spawned it to make socket calls on its

behalf. Hence, BASE requests for connection and queries to the

PGPool-II (SIM_SECRET) proxy go through the SSS Child.

8. The SSS Child then establishes a connection to PGPool-II

(SIM_SECRET) on the behalf of BASE and forwards all the connection

requests and queries to PGPool-II (SIM_SECRET).

9. PGPool-II (SIM_SECRET) will then contact the Remote Connection

database to perform a check to determine the session level associated

with the request. Once the session level associated with the request is

determined, PGPool-II (SIM_SECRET) will then compare the current

session level against the security level of the requested IDS database.

If the user’s current session level dominates the security level of the

IDS database, PGPool-II (SIM_SECRET) will allow the connection and

 24

all read queries. If the users’ session level equals the security level of

the IDS database, it will allow all the write queries as well. Otherwise,

the connection and all queries to the database will be denied. The

queries are determined to be read queries if the strings within the

queries start with the word “SELECT.” Otherwise, they would be

considered as write queries.

10. PGPool-II performs the connection and forwards the queries to the IDS

database.

11. The IDS database returns the query result to PGPool-II

(SIM_SECRET).

12. PGPool-II (SIM_SECRET) forwards the result back to the SSS.

13. The SSS Child, in turn, forwards the result to BASE for it to process.

14. BASE formats the results for display and returns the result to the SSS

Child, after which, BASE will issue a request through the SSS to

terminate the connection to the database.

15. The SSS Child will forward the formatted results back to the client

through the TPE.

BASE will disconnect from the IDS database before connecting to another

IDS database. This is done after step 14 and before step 15. The steps are

displayed in triangles in Figure 4.

1. BASE will send a close connection request to the SSS.

2. The SSS will then forward it to PGPool-II (SIM_SECRET)

3. PGPool-II (SIM_SECRET) will forward it to the database to terminate

the connection.

If access to a database with a security level lower than the current session

level is requested (i.e., SIM_UNCLASSIFIED) from the same BASE session,

steps 4 through 14 would be repeated. The difference is that the SSS child will

 25

establish a connection to PGPool-II (SIM_UNCLASSIFIED) and PGPool-II

(SIM_UNCLASSIFIED) will mediate all access to the database after that. The

checks performed by PGPool-II (SIM_UNCLASSIFIED) in step 9 should result in

allowing the connection to the database that PGPool-II (SIM_UNCLASSIFIED)

manages and only read queries.

2. BASE

To support the changes made to the “IDS read-down” concept of

operations, BASE has to be modified. The user should be able to view SQL

databases at his current session level and choose the security level of the

database he wants to view. If the user selects databases of different levels, the

data will be displayed in ascending order of security levels. Figure 5 displays the

new user interface design.

Figure 5. New user interface design

 26

The circled region numbered 1 shows the current session level of the

user. This information is obtained by executing a STOP system call to obtain the

security level of the process that is serving BASE. Previously, there was no

information regarding the session level of the user. The SQL database at the

current session level is automatically queried and displayed after a successful

BASE login. The circled region numbered 2 displays the security levels of the

databases available to the user. Only security levels dominated by the current

session level will be displayed. The circled region numbered 3 displays the

security level of the data displayed below it. Figure 6 shows how the data is

displayed if multiple security levels are selected. There are labels displayed at

the beginning and end of each section to mark the start and end of information at

a particular security level.

Figure 6. Design of BASE displaying data with two security levels

 27

G. SUMMARY

The requirements analysis and design described in this chapter provide

the supporting architecture for the implementation of the read-down and no write-

down policy for databases. The no read-up policy is enforced by the STOP OS. A

prototype for the project was implemented based on these requirements and the

resulting design. The implementation is described in Chapter IV.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

IV. IMPLEMENTATION

A. OVERVIEW

This chapter covers the implementation of the prototype as a proof-of-

concept for the “IDS read-down” support for the MYSEA environment. The

prototype is composed of a modified PGPool-II middleware program as the

database proxy and a modified BASE application.

B. DEVELOPMENT ENVIRONMENT

The development of the prototype took place in two phases. The first

phase was done on the Fedora 12 Linux operating system. The reason for

performing the first phase on Fedora 12 was to gain familiarity with PGPool-II.

This allowed possible problems associated with running PGPool-II on the STOP

7 OS to be avoided. For example, PGPool-II requires certain standard Linux

functions (e.g., getuid()), which are not available in the STOP 7 OS environment.

In the first phase, PGPool-II was installed and configured to connect to

two IDS databases with notational security levels SIM_UNCLASSIFIED and

SIM_SECRET. A PostgreSQL client test program, psql, which is packaged with

the PostgreSQL distribution, was used to test the connection with the two

databases.

The second phase of the development was performed on the STOP 7

operating system. In this phase, the PGPool-II program was modified to be

session-level-aware. The BASE application was also modified to support

connections to multiple databases by using PGPool-II as the database proxy.

C. IMPLEMENTATION DETAILS

This section covers the details of PGPool-II implementation on the Fedora

12 and MYSEA operating environment. The implementation details for the BASE

application on the MYSEA operating environment are also discussed.

 30

1. PGPool-II on Fedora 12

PGPool-II requires that PostgreSQL libraries be installed. A copy of

PostgreSQL 8.4.4 was obtained from www.postgres.org and installed. No

configuration of the PostgreSQL 8.4.4 database is required, as only the library

files are needed. Once the PostgreSQL libraries were installed, the installation of

PGPool II can proceed. PGPool-II can be obtained from

pgfoundry.org/projects/pgpool/. The detailed installation procedures for PGPool-II

on the Fedora 12 operating system are covered in Appendix A.

The system was then set up as shown in Figure 7. Two instances of

PGPool-II were run using different configurations. One instance was configured

to connect to the SIM_SECRET database on the STOP 7 operating system while

the other instance was configured to connect to the SIM_UNCLASSIFIED

database.

Figure 7. System setup with Fedora 12

The psql application, which was included in the PostgreSQL installation,

was used to determine if the connection to the databases through the two

 31

instances of PGPool-II worked. The psql application is a console-based front-end

to PostgreSQL. It allows queries to be issued interactively to PostgreSQL, and

obtains the results of those queries.

The psql application was connected to both instances of PGPool-II at the

same IP address but different ports. In this configuration, queries made through

PGPool at port 9998 would return results from the SECRET database, whereas

queries made at port 9999 would return results from the UNCLASSIFIED

database.

2. PGPool-II on MYSEA

PGPool-II was modified to be able to work as a database proxy as

described in Chapter III. It has to be aware of the security level of the IDS

database that it is serving, be able to know if the client’s session level dominates

the IDS database’s level, and has to deny all write requests if the client’s session

level is not equal its session level. It also has to deny the connection if the IDS

database’s security level is higher than the client’s session level. Modifications to

the PGPool-II code for its start-up, connection and query requests processing

were added.

Figure 8 shows the modification made to PGPool-II upon start up. The

shaded boxes shows the added functionality for MYSEA. On start up, PGPool-II

is invoked with a parameter specifying the security level of the IDS database. It

then initializes access to the Remote Connection Module Database. If to the

initialization sequence is successful, the PGPool-II proxy continues its normal

execution. Otherwise, the PGPool-II proxy will terminate immediately.

 32

Figure 8. PGPool-II startup

Figure 9 shows the modified flow diagram to reflect the changes to

PGPool-II during its connection processing. The shaded regions are the new

additions to the PGPool-II application. PGPool-II will now check if the request is

registered in the Remote Connection Database. If it is not, PGPool-II will deny

the connection request to the database and resume listening for connections. If it

is registered, PGPool-II will perform the connection to the database and start

listening for queries.

 33

Figure 9. PGPool-II to database connection

The last modification to PGPool-II changes its handling of query requests.

The shaded regions in Figure 10 show the changes to the logic made for the

query request.

 34

Figure 10. PGPool-II query request

 35

On receiving a query request, PGPool-II will first check if the user’s current

session level dominates the security level of the database. If it does not, the

query will be denied. If it does, PGPool-II will then check if the session level

equals the security level of the database. If they are equal, the query will be

forwarded to the database. Otherwise, PGPool-II checks if the request is a

SELECT query. If it is a SELECT query, the query will be sent to the database.

Otherwise, the query will be denied.

3. BASE on STOP 7

The BASE application was modified in order to support the “read-down”

concept of operations needed for MYSEA. Headers have been added to the

display to indicate the current session level and allowable display levels as

shown in Figure 11.

Figure 11. BASE header display

The other major modifications to the BASE application are as follows:

• The configuration file includes an array of two entries of advisory

label information: one for SIM_UNCLASSIFIED and the other for

SIM_SECRET. Only two entries are used for the purpose of the

demonstration; more can be added in the future. Each entry is a

structure consisting of the security level, binary representation of the

label, IP address and port number of the corresponding database,

and color of the label for display. The details of each field for the

advisory label information is given below.

1. Security levels: This is the advisory label for the security level of

the IDS database, e.g., SIM_UNCLASSIFIED.

 36

2. Binary representation: This is a numerical value assigned to an

advisory label to determine its dominance relation, e.g.,

SIM_UNCLASSIFIED and SIM_SECRET are assigned the value

0 and 2, respectively.

3. IP address: The IP address of the SQL database to connect to.

4. Port number: The port number of the SQL database to connect

to.

5. Color: The color that the label would be displayed in at the start

and end of that section.

• There is only one configuration file for BASE per system. The MAC

and DAC permissions (in the form of MAC:DAC) for this file is set to

syslo:madmin.admin.0644. This file cannot be modified by BASE

during runtime.

• The execution of a STOP kernel call to extract the user’s current

session level.

• Advisory labels encapsulate the data displayed at each sensitivity

level, as shown in Figure 12.

• If multiple IDS data with different security levels are selected for

display, the data will be presented in separate sections, in the

increasing order of security level, as shown in Figure 12.

• When a link in a particular section of a security level is selected, only

the data related to that security level is presented in the new page in

the same browser window. Advisory labels will also encapsulate

requested data on the new page that BASE creates. All links within a

section at a particular classification level point to information at that

level.

 37

Figure 12. BASE displaying data with two security levels

Figure 13 displays the logic used to determine which advisory labels are to

be added to the header of the BASE display. A STOP system call is first made to

obtain the current user’s session level (returned in ASCII string format), and

saved for later use. The entries of advisory label information are then obtained

from the configuration file and the binary representation of current session level

is extracted by finding the matching security level string in those entries. This

binary representation is then compared to all the mapping binary representation

values contained in the entries. If the binary representation of the advisory label

dominates the mapping binary representation value, the corresponding advisory

label is added to the display. Otherwise, the advisory label is ignored. Once all

the advisory labels have been compared, the header display is completed.

 38

Figure 13. BASE header logic

 39

Figure 14. BASE data presentation logic

 40

Figure 14 shows the logic used to query and present IDS data on the web

browser. The shaded boxes show the changes to the display logic. The logic for

the code is repeated based on the dominance relation of the labels. If the display

checkbox for an advisory label that the current session level dominates is

checked, it will read the connection parameters (IP address and port number),

connect to the corresponding database, display the advisory label marking the

start of the displayed data block, the data returned from the database and is

completed with the second advisory label. The process is repeated for the each

subsequent label dominated by the current session until there are no more

labels.

D. PROBLEMS ENCOUNTERED

This section discusses some of the known problems with the current

implementation and the problems encountered that were solved.

1. Issues With Current Implementation

In the current implementation, the BASE application will always perform a

connection to the IDS database through the proxy before a query. As the

connection to a lower level classification database is now allowed due to the

database proxy, this leads to a potential covert channel using the connection

requests. A malicious program could be used to cause the BASE application to

connect to a database at timed intervals, resulting in a timing covert channel.

2. Solved Issues

Enabling automatic updates to the event cache require a write operation to

the BASE-specific database. This would mean that if multiple IDS databases of

varying security levels were accessed, this write operation would be performed

on all the databases. As a write-down to the databases of lower security level is

not allowed, this would result in the premature termination of the display due the

error messages. A solution was to disable the automatic updates option in the

configuration file. However, that results in the user having to manually perform

 41

the update in order to view the new alerts. The updates to the databases of the

lower security levels would also result in error messages as writing down is not

permitted, causing a premature termination of the display.

A partial solution to this issue was to allow automatic updates to the event

cache if the user’s current session level is equal to security level of the database.

Automatic updates to the event cache are not permitted if the security level of the

database is lower than the user’s current session level. To see if the event cache

for the lower level database is updated, the user has to click on the “Cache &

Status” link to display the cache status on a new web page. If the cache is not

updated, the total number of events listed under “Alert Information Cache” will not

tally with the cached events. Clicking on “Update Alert Cache” will cause an error

as writing down is now permitted.

Figure 15. BASE event cache

In order to update the event cache, a modified concept of operations is

required. The user has to log out of the current session level and log in at the

level of the database with the event cache to be updated. The user then has to

login to the BASE application, which will automatically update the event cache.

The user can then log out of this session level and log in to the previous level,

where he will be able to view the updated and consolidated IDS data.

 42

E. SUMMARY

With the implementation of PGPool-II as the database proxy and

modification of BASE, the no read-up and no write-down MAC policy is enabled.

The reports generated from different security levels of IDS databases can also

consolidated and displayed in a single page. The next chapter describes the

developmental and acceptance tests performed to ensure that the modifications

support the top-level requirements.

 43

V. TESTING

This chapter describes the development and acceptance test plans

designed to verify that the newly implemented database proxy and modified

BASE functions properly. The results of the tests conducted are also presented.

A. OVERVIEW

Eleven systems were utilized during testing: the MYSEA server that hosts

the database proxy, the modified BASE and the IDS databases, a Fedora Linux

system as the Server Gateway, three Fedora Linux systems as the TPEs, three

clients equipped with a web browser, two servers running the IDS and an

attacker machine, which will simulate attack traffic for the IDS. Figure 16 shows

the setup of the test environment. Different clients are used to demonstrate that

the BASE display will be the same regardless of the platform used. Each

individual client will connect to the MYSEA Server through its TPE and the

gateway server.

Figure 16. Test setup

 44

The developmental and acceptance test plans and results in this chapter

are only discussed at a general level; the detailed test procedures are

documented in Appendix C.

B. DEVELOPMENTAL TESTING

The purpose of developmental testing is to test the functionality of each of

the components of the database proxy and BASE that were implemented or

modified as part of this thesis. Sample data in the IDS databases are used in this

part of the testing.

1. PGPool-II Test Plan

The purpose of this test suite is to verify that the modified PGPool-II proxy

correctly handles the connection to and query requests to the IDS databases.

The web browser on the client machine is used to connect and query the IDS

databases through BASE.

The tests are performed by trying to connect to the IDS databases at

levels equal to, higher than and lower than the user’s current session level. To

perform the tests individually, the configuration file for BASE is modified such that

it only has single level access. This is needed because using an unmodified

configuration file will not allow tests that attempt to access databases at higher

levels, such as the connect up test case (Test A7). The read and write queries to

different security levels of the IDS databases are also tested. The test cases are

described in Table 3.

 45

Test
ID

Test Type Action Expected Result

A1 Connect equal Connect to IDS database
with security level equal
to that of the user’s
session level

Connection
successful

A2 Read equal Read request sent to the
IDS database with a
security level equal to
that of the user’s session
level

Successful read
query with results
returned

A3 Write equal Write request sent to the
IDS database with a
security level equal to
that of the user’s session
level

Successful write
query

A4 Connect down Connect to the IDS
database with a security
level less than that of the
user’s session level

Connection
successful

A5 Read down Read request sent to the
database with a security
level less than that of the
user’s session level

Successful read
query with results
returned

A6 Write down Write request sent to the
IDS database with a
security level less than
that of the user’s session
level

Unsuccessful write
query with error
message returned.

A7 Connect up Connect to the IDS
database with a security
level higher than that of
the user’s session level

Connection
unsuccessful

A8 Incorrect
parameters

Reload PGPool-II using
incorrect IP address and
port number to the IDS
database.

Connection
unsuccessful

Table 3. Test cases for PGPool-II

 46

An additional exception test case was also performed to determine if

unauthorized applications could to connect to the IDS databases through

PGPool-II. This test is described in Table 4. Applications not registered in the

Remote Connection Database are not allowed access to the IDS databases.

Test
ID

Test Type Action Expected Result

B1 Unauthorized

connection

Connect to IDS database

using psql

Connection

unsuccessful

Table 4. Exception test case for PGPool-II

2. BASE Test Plan

The purpose of this test suite is to verify that the modified BASE

application correctly displays the user’s current session level as an advisory

label. It should also display all the security levels that are dominated by the

user’s current session level in the form of checkbox options. All the IDS data at

each security level should be presented within sections marking the start and end

of the IDS data of that security level. For this set of tests, BASE is set up as

shown in Chapter III, Figure 4. The test cases are presented in Table 5.

Test
ID

Test Type Action Expected Result

C1 Login Display at
SIM_UNCLASSIFIED
level

Display login page Advisory label of
SIM_UNCLASSIFIED
is displayed. There is
also only one option
displayed for security
level selection.

C2 Login at
SIM_UNCLASSIFIED
level

Login (which
automatically queries
the
SIM_UNCLASSIFIED
database)

Login Successfully.
The main page is
displayed with the
advisory label of

 47

SIM_UNCLASSIFIED
and the returned IDS
data. There is also
only one option
displayed for security
level selection.
Advisory labels are
placed at the start and
end of the displayed
IDS data section.

C3 Page Navigation for
SIM_UNCLASSIFIED

Click on a link A new page is
displayed in the same
window, showing the
query results of the
SIM_UNCLASSIFIED
database. Advisory
labels are placed at
start and end of the
SIM_UNCLASSIFIED
IDS data.

C4 Login Display at
SIM_SECRET level

Display login page Advisory label of
SIM_SECRET is
displayed. There are
also only two options
(SIM_UNCLASSIFIED
and SIM_SECRET)
displayed for security
level selection.

C5 Login at SIM_SECRET Login (which
automatically queries
the SIM_SECRET
database)

Login Successfully.
Main page is
displayed.
Advisory Label of
SIM_SECRET is
displayed with the
returned IDS data.
Advisory labels are
placed at the start and
end of the displayed
SIM_SECRET IDS
data.

C6 Data consolidation Ensure that both the
SIM_UNCLASSIFIED
and SIM_SECRET

Both checkboxes
remain checked.
Advisory labels for

 48

checkboxes are
checked and click on
the “Go” button.

SIM_UNCLASSIFIED
and SIM_SECRET
data are placed at the
start and end of each
section.

C7 Lower level data only Ensure that only the
SIM_UNCLASSIFIED
checkbox is checked
and click on the “Go”
button.

The
SIM_UNCLASSIFIED
checkbox remains
checked. Only the
SIM_UNCLASSIFIED
data is displayed and
advisory labels for
SIM_UNCLASSIFIED
data are placed at the
start and end of the
IDS data section.

C8 Page Navigation -
SIM_SECRET

Click on a link in the
SIM_SECRET
section of the data.

The resulting page will
be displayed in the
same window,
showing only the
SIM_SECRET data.
The corresponding
advisory labels are
placed at the start and
end of the IDS data
section.

C9 Page Navigation
(SIM_SECRET)

Click on a link in the
SIM_UNCLASSIFIED
section of the data.

The resulting page will
be displayed in the
same window,
showing only the
SIM_UNCLASSIFIED
data. The
corresponding
advisory labels are
placed at the start and
end of the IDS data
section.

Table 5. BASE test cases

For the second set of tests, BASE is configured to connect directly to the

IDS databases without using the database proxy as shown in Figure 17. The test

 49

cases presented in Table 6 are used to verify that read-down is not allowed if

BASE is misconfigured to connect directly to the IDS databases or with incorrect

parameters to the database proxy. The SSS Child performs the enforcement to

prevent BASE from reading down.

Figure 17. BASE test setup

 50

Test
ID

Test Type Action Expected Result

D1 Connect equal Login at
SIM_SECRET and
connect to the
SIM_SECRET IDS
database

Advisory label of
SIM_SECRET is
displayed.
The SIM_SECRET IDS
data is displayed on the
main page.

D2 Connect down Connect to the
SIM_UNCLASSIFIED
IDS database

Advisory label of
SECRET is still displayed.
Only the
“UNCLASSIFIED”
checkbox is checked. An
error message showing
that it cannot connect to
the UNCLASSIFIED
database is displayed.

D3 Incorrect
parameters

Set the IP address
and port number of
database to connect
to values not
belonging to PGPool-
II or IDS database

An error message
showing that it cannot
connect to the database is
displayed.

Table 6. Test cases for BASE without proxy

C. DEVELOPMENTAL TESTING RESULTS

Developmental testing of PGPool-II did not reveal any unforeseen

problems. It was able to allow connections from clients with session levels that

dominate the security level of the IDS databases and deny those that do not

dominate. For clients with session levels that dominate the security level of the

IDS databases, PGPool-II was able to allow read access. PGPool-II was able to

deny write access to clients whose session levels are not equal to the security

level of IDS databases. For the exception testing, PGPool-II was also able to

deny access to unauthorized applications such as psql.

 51

Developmental testing of BASE was also completed successfully. The

advisory label of the current session level is always displayed. The checkboxes

displayed levels that are dominated by the current session level. Advisory labels

are also displayed at the start and end of each IDS data block, indicating the

security level of the data displayed in that section. The tests also demonstrate

that BASE is unable to connect to an IDS database with a lower security level if it

configured to connect to the IDS databases directly.

D. ACCEPTANCE TESTING

The goal of acceptance testing is to verify that the implemented PGPool-II

and BASE application are able display “live” IDS alerts generated by IDS

machines using attack traffic from the simulated attacker machine. This updated

data should be presented when the web page is refreshed. Multiple clients

should also be able to access the different IDS databases at the same time. The

test cases are presented in Table 7.

Test
ID

Test Type Action Expected Result

E1 Updates to
SIM_UNCLASSIFIED
IDS database while
logged in at session
level of
SIM_SECRET

Refresh web page The SIM_UNCLASSIFIED
section should display the
IDS data that is not
updated.

E2 Updates to
SIM_SECRET IDS
database while
logged in at session
level of
SIM_SECRET

Refresh web page The SIM_SECRET
section should display the
updated IDS data.

E3 Updates to
SIM_UNCLASSIFIED

Refresh web page The SIM_UNCLASSIFIED
section should display the

 52

IDS database while
logged in at session
level of
SIM_UNCLASSIFIED

updated IDS data.

E4 View the now
updated
SIM_UNCLASSIFIED
data while logged in
at session level of
SIM_SECRET

Login. Ensure that
the
SIM_UNCLASSIFIED
checkbox is checked
and click on the “Go”
button.

The SIM_UNCLASSIFIED
section should now
display the updated IDS
data.

E3 Multiple clients
access

Login in multiple
clients at different
security levels

The web page of each
client should display data
relevant to its security
level.

Table 7. Acceptance test cases

E. ACCEPTANCE TEST RESULTS

The results of the acceptance tests were successful, demonstrating that

updated data can be displayed when an IDS generates new alerts. Multiple

clients at different security levels can also access the different IDS databases at

the same time. Together with the developmental tests, the acceptance tests have

shown that the current implementation of PGPool-II and BASE meets the top-

level requirements described in Chapter III, Section D. Detailed test results are

provided in Appendix D.

 53

F. SUMMARY

This chapter described the developmental tests performed on the PGPool-

II and BASE that were implemented and modified for this project, and the

acceptance tests performed to ensure that the PGPool-II and BASE were able to

interact within the MYSEA context to fulfill the top level requirements of this

project. All the tests conducted were successful and the test outputs are provided

in Appendix D. The next chapter concludes with a project summary and

suggestions for future work.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

VI. CONCLUSION

This chapter covers some of the future work that could be done to improve

the IDS and database proxy, and the conclusion for this thesis.

A. FUTURE WORK

Several issues arose from this work that suggest further study and

research to resolve them.

1. PGPool-II

Whenever a connection request from the client is sent to PGPool-II, it will

contact the Remote Connection database to perform a check to determine if the

client’s session level is higher than or equal to the security level of the IDS

database. If the client’s session level is higher than or equal to the security level

of the IDS database, PGPool-II will forward the connection request to the IDS

database. This connection request will always be performed before the BASE

application issues a query. This gives rise to a potential covert channel using the

connection requests for lower level classification databases. A malicious program

could be used to cause the BASE application at a higher security level to connect

or disconnect to a lower level IDS database at timed intervals. Another malicious

program running at that lower level, could probe the database at timed intervals

to determine if a connection between PGPool-II and the database exists. The

malicious program running at that lower level could then extract some information

based on the connection status, resulting in a timing covert channel. Further

analysis should also be conducted to determine if storage channels exist.

A possible solution to this is to maintain a continuous connection between

PGPool-II and the corresponding IDS database. As PGPool-II will always be

connected to the corresponding IDS database, the connections from the BASE

application to the IDS database through PGPool-II cannot be used as a timing

covert channel. This would eliminate the problem of a covert channel in this case.

 56

2. BASE Event Cache

In the current implementation, the automatic update to the event cache of

the BASE-specific databases with the security levels lower than that of the user’s

current session level is disabled, as it causes a premature termination of the

display due to the error messages returned when attempting to perform a write-

down. As a result, the user is only able to view the updated data from the event

cache of the BASE-specific database with the security level equal to that of the

user’s current session level. He is only able to view the older data for the

databases with the security level lower than that of the current session level. In

order to update the event cache, the user has to log out of the current session

level and log in at the session level where the update is required. He then has to

log out and log in again at the previous session level to view the updated

consolidated IDS data.

This issue arose because of the way BASE is implemented. It redundantly

stores commonly used information in its own table to reduce the processing time

required to retrieve it from several Snort tables. A possible solution is to modify

BASE to write the event cache of all databases that BASE can query to the

existing table, acid_event, in the database running at the level equal to the

current session level. This can be done by adding an additional field as shown in

Table 8 to indicate the security level of that event.

Security Level BASE Event Table Information

SIM_UNCLASSIFIED Alert 1 information

SIM_UNCLASSIFIED Alert 2 information

SIM_SECRET Alert 3 information

SIM_SECRET Alert 4 information

Table 8. Additional field to BASE event cache table

 57

Another possible solution is to implement addition event cache tables for

each security level dominated by the security level of the database. However,

this is not as scalable as the previous solution as additional tables have to be

added at various security levels if the security level list grows.

3. BASE Advisory Labels

The set of advisory labels used by the BASE application is currently

maintained in the BASE configuration files. The MYSEA server also maintains a

separate set of advisory labels. If the label list in the MYSEA server grows, or if

other labels for integrity or compartments are added, the set of advisory labels in

the BASE configuration files would have to be updated to reflect these changes.

Inconsistencies may arise if the set of advisory labels for the MYSEA server and

BASE are not synchronized. Instead of having to maintain a separate set of

advisory labels in the BASE configuration files, the BASE application could be

modified to extract them from the MYSEA server. This would prevent

inconsistencies in the label sets between BASE and the MYSEA server.

Changes to the label set in the MYSEA server may be required in order to

provide the mapping between the label and the corresponding binary

representation.

4. IDS Improvements

Snort is the current choice of IDS for the MYSEA environment. However,

Snort is single-threaded and thus, is able to look at only one packet at a time.

Suricata, on the other hand, is multi-threaded, which allows it to concurrently

inspect multiple network packets. This improves the chances of detecting attack

traffic. While the current performance of Suricata is not up to par with Snort [10],

development is ongoing to improve it. Further analysis should be done to

determine if Suricata could replace Snort when its implementation becomes more

mature.

 58

B. CONCLUSION

The following questions were asked at the start of this thesis.

1. Can a trusted mechanism be designed that will permit operators to

read intrusion detection information at multiple classification levels

while enforcing the system’s overall mandatory confidentiality policy?

2. The SQL database allows both read and write access when

connected. Can the designed trusted mechanism restrict write access

when a user at a higher security level connects to a database of a

lower security level?

This thesis has addressed the two questions with the design and

implementation of a database proxy and BASE modification. The database proxy

mediates the access between the BASE application and the IDS databases to

enforce the system’s overall mandatory confidentiality policy. The database proxy

prevents the BASE application from reading up and writing down while the

modifications to the BASE application would allow operators to view intrusion

detection information at multiple classification levels within a single web page.

The MYSEA project aims to provide a distributed multilevel secure

operating environment that allows authenticated users to access data as

permitted by the mandatory access control policy enforced by the MYSEA MLS

server. With the design and implementation of the database proxy, it has been

extended to provide “IDS read-down” capability to allow the system security

analysts to obtain a more integrated view of the IDS alerts. This extension lays

the groundwork to support real-time system response to network attacks.

 59

APPENDIX A. SOURCE CODE LISTING

This appendix provides a listing of the BASE source code files that were

created or modified for this project. The files that were modified for this project

are indicated with an asterisk. All these files reside on the MYSEA server.

The following file generates the header information, which includes the

advisory label, checkbox options as shown in Figure 13 in Chapter IV.

base_mysea.php

The following files were modified to include the BASE data presentation

logic as illustrated in Figure 14 in Chapter IV.

base_ag_main.php*

base_common.php*

base_conf.php*

base_main.php*

base_maintanence.php*

base_qry_alert.php*

base_qry_main.php*

base_stat_alerts.php*

base_stat_ipaddr.php*

base_stat_iplink.php*

base_stat_ports.php*

base_stat_sensor.php*

base_stat_time.php*

base_stat_uaddr.php*

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

APPENDIX B. INSTALLATION PROCEDURES

This appendix outlines the installation procedures for installing PGPool-II

on Fedora 12 and MYSEA, and BASE on MYSEA.

A. PGPOOL-II INSTALLATION ON FEDORA 12

This section covers the installation of PGPool-II and PostgreSQL on

Fedora 12. PostgreSQL has to be installed first as PGPool-II requires a library

file from PostgreSQL. The setup is as shown in Figure 18.

Figure 18. PGPool-II setup on Fedora 12

1. PostgreSQL Installation

1. Download PostgreSQL 8.4.4 from www.postgres.org to obtain the

tar file postgresql-8.4.4.tar to the folder /home/Student/Downloads

2. Root access is required for the following steps. To get root access,

first launch the Terminal and type the following:

 su

 Password: <root password>

 62

3. Copy the tar file to /usr/local/src and install PostgreSQL by typing

the following commands

 cp /home/Student/Downloads/postgresql-8.4.4.tar

/usr/local/src

 cd /usr/local/src

 tar –xvf postgresql-8.4.4.tar

 cd postgresql-8.4.4

 ./configure

 make

 make install

4. As only the library files from PostgreSQL are required, no further

configuration is necessary and the installation for PostgreSQL is

complete.

2. PGPool-II Installation

1. Download PGPool-II 2.3.3 from pgfoundry.org/projects/pgpool/ to

obtain the tar file pgpool-II-2.3.3.tar to the folder

/home/Student/Downloads

2. At the same Terminal, copy the tar file to /usr/local/src and install

PGPool-II by typing the following commands

 cp /home/Student/Downloads/pgpool-II.2.3.3.tar

/usr/local/src

 cd /usr/local/src

 tar –xvf pgpool-II.2.3.3.tar

 cd pgpool-II.2.3.3

 ./configure

 make

 63

 make install

3. As the test setup requires two instances of PGPool-II, two copies of

the configuration files are required.

 cp /usr/local/etc/pgpool.conf.sample

/usr/local/etc/pgpool_unclassified.conf

 cp /usr/local/etc/pgpool.conf.sample

/usr/local/etc/pgpool_secret.conf

4. Configure the pgpool_unclassified.conf located at /usr/local/etc/

pgpool_unclassified.conf. Configure the parameters so that they

look like the following:

 listen_addresses = ‘*’

 port = 9999

 pcp_port = 9898

 pid_file_name=’/var/run/pgpool/pgpool_unclassifie

d.pid’

 backend_hostname0 = ‘192.168.100.140’

 backend_port0 = 5433

5. Configure the pgpool_secret.conf located at /usr/local/etc/

pgpool_secret.conf. Configure the parameters so that they look like

the following:

 listen_addresses = ‘*’

 port = 9998

 pcp_port = 9897

 pid_file_name=’/var/run/pgpool/pgpool_secret.pid’

 backend_hostname0 = ‘192.168.101.140’

 backend_port0 = 5434

 64

6. Start the two instances of PGPool-II with the following commands

 pgpool –f /usr/local/etc/pgpool_unclassified.conf

&

 pgpool –f /usr/local/etc/pgpool_secret.conf &

7. To verify that both instances are started, type

 ps –ef | grep pgpool

 There should be two entries in the output, which correspond to:

 pgpool –f /usr/local/etc/pgpool_unclassified.conf

and

 pgpool –f /usr/local/etc/pgpool_secret.conf

To test the connection to the IDS databases, start up psql in

/usr/local/pgsql/bin

 cd /usr/local/pgsql/bin

 To connect to the SIM_UNCLASSIFIED IDS database

 ./psql –h localhost –p 9999 –U snort

 Password for user snort: <snort password>

 At the display prompt, type

 snort=> select * from acid_event;

 The results of the query should be displayed. Note the number

 of rows then quit psql.

 snort=> \q

 Next connect to the SIM_SECRET IDS database

 ./psql –h localhost –p 9998 –U snort

 Password for user snort: <snort password>

 At the display prompt, type

 65

 snort=> select * from acid_event;

 The results of the query should be displayed. Note the number

 of rows. The number of rows should be different. This proves that both

 instances of PGPool-II are able to connect to the two different IDS

 databases.

 Quit the psql application by typing

 snort=> \q

B. PGPOOL-II AND BASE INSTALLATION ON STOP 7

This section covers installation of the modified PGPool-II and BASE on

MYSEA running the STOP 7 OS. The IDS databases are assumed to be running

already.

1. MYSEA Server Setup

The general steps to set up the MYSEA server are as follows:

1. Get all the source code from the MYSEA Configuration

Management archive.

2. Perform the standard procedures for MYSEA installation and

customize the network settings.

3. Customize the MYSEA server with PostgreSQL installation,

PGPool-II installation, PHP (with PostgreSQL support) and

backend port configurations to support the database proxy.

The detailed installation procedures can be obtained from "MYSEA

Database Proxy Prototype Installation Manual, Version 1.0, November 2010"

[16].

 66

2. BASE Installation

This section assumes that no MYSEA server processes are currently

running. The steps to install the BASE application on the MYSEA server is as

follows:

1. Remove the Default Route.

 a. Login as ‘madmin’ user with password ‘<madmin password>’

 b. Get the required privilege for making changes

 sec_label –p –l admin,all_exempt

 c. Modify MYSEA route file (comment out default route)

 vi /xts/etc/startup.d/20-routes

 Modify the line

 route add 0.0.0.0/0 192.168.0.254 to

 #route add 0.0.0.0/0 192.168.0.254

 e. Reboot the system for the changes to take effect

 shutdown -r

2. Copy the modified BASE Application into the MYSEA server.

Obtain a CISR CM archive “Thesis-Ang-2010” CD containing the

MYSEA_BASE.tar tarball, The following assumes that the CD

device on the STOP 7.2.1 VM is on /dev/hdb.

 a. Login as ‘madmin’ user with password ‘<madmin password>’

 b. Get the required privilege for making changes

 sec_label –p –l admin,all_exempt,m_priv_macdac

 c. Mount the CD device.

 mount –r /dev/hdb /mnt/cdrom

 d. Copy MYSEA_BASE.tar to the /home/madmin/mysea directory.

 67

 cp /mnt/cdrom/MYSEA_BASE.tar /home/madmin/mysea

 e. Copy the PGPool-II test configuration files to /local/mysea/conf

 directory.

 cp /mnt/cdrom/pgpool*.wrong /local/mysea/conf

 f. Modify the PGPool-II test configuration files permission.

 sec_label –l m_user_obj:syslo:madmin.m_sys.0444

/local/mysea/conf/pgpool*.wrong

 g. Unmount the CD device.

 umount /mnt/cdrom

3. Install the modified BASE application.

 a. Extract the modified BASE application into the

 /home/madmin/mysea/server/home_http_data/htdocs directory.

 tar -C

/home/madmin/mysea/server/home_http_data/htdocs -xvf

/home/madmin/mysea/MYSEA_BASE.tar

 b. Remove the ids_demo/setup directory:

 rm -rf

/home/madmin/mysea/server/home_http_data/htdocs/ids_demo/se

tup

 c. Go to /home/madmin/mysea/server directory and run the

 make_data_tar script.
 cd /home/madmin/mysea/server

 ./make_data_tar

 d. Go to /home/madmin/mysea/server/scripts directory and run the

 mysea_datainst.sh script.
 cd /home/madmin/mysea/server/scripts

 68

 ./mysea_datainst.sh

 When prompted, enter '1' for TWiki Data Demo

 69

APPENDIX C. TEST PROCEDURES

This appendix documents the test procedures used in the Test Plan

presented in Chapter V. The test network should be set up as shown in Figure 19

before testing.

Figure 19. Detailed test setup

The server gateway, TPEs and the clients (in the left dotted box) are

part of the standard MYSEA setup and thus, their setup is not discussed here.

The setup of the IDS and attacker machines can be found in Appendix B of

Tenhunen’s thesis [3]. For the setup of the MYSEA server, refer to Section B of

Appendix B.

As the numbers of machines are limited, Virtual Machines (VMs) are

used in the place of actual machines. The following steps are then performed.

1. Power up all the systems in the test network.

 70

2. Start MYSEA Server VM (MYSEA-Server-IDS-STOP 7.2.1)

 Note: <SAK> is <Alt> + <SysRq/PrintScreen>

 a. <SAK>

 b. Login as ‘madmin’, password is ‘‘<madmin password>’

 c. Go to ‘/local/mysea/scripts’

 cd /local/mysea/scripts

 d. Start MYSEA daemons

 ./mysea_start_daemon.sh 8000

 e. Start the PostgreSQL databases

 ./start_postgres.sh SIM_UNCLASSIFIED

 ./start_postgres.sh SIM_SECRET

 f. Start PGPool-II

 ./start_pgpool.sh

3. Start Snort on IDS1 (Debian4.0 – IDS1 VM)

 a. Login as ‘root’, password is ‘‘<root password>’

 b. Start snort:

 snort -u snort -g snort -c /etc/snort/snort.conf

&> ids1_test1.txt

4. Start Snort on IDS2 (Debian4.0 – IDS VM)

 a. Login as ‘root’, password is ‘‘<root password>’

 b. Start snort:

 snort -u snort -g snort -c /etc/snort/snort.conf

&> ids2_test1.txt

5. Start the IDS Wakeup: Debian4.0 – idswakeup VM

 71

 a. Login in with username ‘mdemo1’ and password ‘<mdemo1

 password>’.

 b. Start the ‘root’ terminal located on the desktop and enter

 ‘<root password>’ as the password.

6. Connect the Server Gateway VM to MYSEA Server

 a. Login as ‘root’, password is ‘‘<root password>’

 b. Open a terminal window (located on desktop)

 c. Change directory to /root/mysea/bin

 cd /root/mysea/bin

 d. Restart DSS configuration

 ./dss_restart

 e. Register DSS Client:

 ./dss_client 192.168.0.140

7. Connect the TPE1 VM

 a. Login as ‘root’, password is ‘‘<root password>’

 b. Open a terminal window (located on desktop)

 c. Change directory to /root/mysea/bin

 cd /root/mysea/bin

 d. Restart DSS configuration

 ./dss_restart

 e. Register DSS Client:

 ./dss_client 192.168.0.140

 f. Open another terminal window and type

 cd /root/mysea/bin

 72

 g. Start the TPE

 ./tcbe.py

 h. Click on the ‘SAR’ button

 i. Enter ‘mdemo1’ as the user name

 j. Enter ‘‘<mdemo1 password>’ as the password

 k. Click on the ‘SAR’ button. Enter the command ‘sl’

 Enter session level as ‘SIM_SECRET’

 l. Click on ‘SAR’ button. Enter the command ‘run’. Wait for the

 “RUN command completed” message to be displayed.

8. On the Windows XP system,

 a. Launch the web browser (Internet Explorer)

 b. Browse default MYSEA Server page at

 http://mlsserver.cisrlabmlstestbed1.com

 The advisory label displayed should be ‘SIM_SECRET’.

 c. Browse to BASE login page

 http://mlsserver.cisrlabmlstestbed1.com/ids_demo/index.php

A. PGPOOL-II TEST PROCEDURES

At the STOP 7 prompt, navigate to /home/http/htdocs/ids_demo.

cd /home/http/htdocs/ids_demo

The test procedures are as follows:

1. For test cases A1 and A2, use the configuration file stored in the

directory navigated to by doing:

 cp base_conf.php.a-equal base_conf.php

 73

2. On the Windows XP system, refresh the BASE login page on the

web browser.

3. Perform the actions listed for test cases A1 and A2

4. On the STOP 7 OS, use the base_conf.php.a-equal2 file. This file

sets the ‘$event_cache_auto_update’ parameter to 1, which

causes BASE to perform a write query to the IDS database.

 cp base_conf.php.a-equal2 base_conf.php

5. Generate traffic on the IDS Wakeup: Debian4.0 – idswakeup VM

 a. Generate alert traffic for the SIM_UNCLASSIFIED network

 idswakeup 192.168.100.50 192.168.100.140

 b. Generate alert traffic for the SIM_SECRET network

 idswakeup 192.168.101.50 192.168.101.140

6. On the Windows XP VM, browse to the BASE login page again and

then perform the actions specified in A3.

7. On the STOP 7 VM, overwrite the ‘base_conf.php’ file with the

‘base_conf.php.a-readdown’ file.

 cp base_conf.php.a-readdown base_conf.php

8. On the Windows XP VM, browse to the BASE login page again.

Login with username as ‘snort’ and password as ‘<snort

password>’. Ensure that the SIM_UNCLASSIFIED checkbox is

checked, and the SIM_SECRET checkbox is not and click on the

‘Go’ button.

9. Perform the actions specified in A4 and A5.

10. Repeat step 7, followed by clicking on the “Go” button. Click on the

“Cache and Status” link at the bottom of the web page.

11. Perform the actions specified in A6.

 74

12. Close the web browser on the Windows XP machine.

13. On the STOP 7 VM, overwrite the ‘base_conf.php’ file with the

‘base_conf.php.connectup’ file.

 cp base_conf.php.connectup base_conf.php

14. On the TPE1 VM, click on the ‘SAR’ button in the TPE window and

enter the command ‘sl’. Enter ‘SIM_UNCLASSIFIED’ for the

session level.

15. Click the ‘SAR’ button again and enter the command ‘run’. Wait for

the “Run command completed” message to be displayed.

16. On the Windows XP VM, launch the Internet Explorer web browser.

17. Browse to the MYSEA Server page at

http://mlsserver.cisrlabmlstestbed1.com. The advisory label

displayed should be ‘SIM_UNCLASSIFIED’.

18. Browse to the BASE login page. The advisory label displayed

should be ‘SIM_UNCLASSIFIED’. However, the underlying IP

address and port number has been deliberately mis-configured to

connect to the SIM_SECRET IDS database.

19. Perform the actions specified in A7.

20. On the STOP 7 VM, replace the ‘base_conf.php’ to the MYSEA

settings.

 cp base_conf.php.mysea base_conf.php

21. Close the web browser on the Windows XP VM.

22. On the TPE1 VM, click on the ‘SAR’ button in the TPE window and

enter the command ‘sl’. Enter ‘SIM_SECRET’ for the session

level.

23. Click the ‘SAR’ button again and enter the command ‘run’. Wait for

the “Run command completed” message to be displayed.

 75

24. On the STOP 7 VM, terminate PGPool-II.

 /local/mysea/scripts/stop_pgpool.sh

25. Save the original configuration files first.

 cp /local/mysea/conf/pgpool_SIM_UNCLASSIFIED.conf

/local/mysea/conf/pgpool_SIM_UNCLASSIFIED.conf.orig

 cp /local/mysea/conf/pgpool_SIM_SECRET.conf

/local/mysea/conf /pgpool_SIM_SECRET.conf.orig

26. Overwrite the PGPool-II configuration with files that are

misconfigured.

 sec_label –p –l admin,all_exempt:

 cp

/local/mysea/conf/pgpool_SIM_UNCLASSIFIED.conf.wrong

/local/mysea/conf/pgpool_SIM_UNCLASSIFIED.conf

 cp /local/mysea/conf/pgpool_SIM_SECRET.conf.wrong

/local/mysea/conf /pgpool_SIM_SECRET.conf

 sec_label –p –l admin:

27. Restart PGPool-II.

 /local/mysea/scripts/start_pgpool.sh

28. On the Windows XP VM, launch the web browser.

29. Browse to the BASE login page and perform test A8.

30. On the STOP 7 VM, restore the configuration files to their original

settings.

 sec_label –p –l admin,all_exempt:

 cp

/local/mysea/conf/pgpool_SIM_UNCLASSIFIED.conf.orig

/local/mysea/conf/pgpool_SIM_UNCLASSIFIED.conf

 76

 cp /local/mysea/conf/pgpool_SIM_SECRET.conf.orig

/local/mysea/conf /pgpool_SIM_SECRET.conf

 sec_label –p –l admin:

31. Stop and restart PGPool-II.

 /local/mysea/scripts/stop_pgpool.sh

 /local/mysea/scripts/start_pgpool.sh

32. Close the web browser on the Windows XP VM.

Test
ID

Test Type Action Expected Result

A1 Connect equal Enter the username as
‘snort’ and password as
‘‘<snort password>’

Connection successful. The
main page will be
displayed.

A2 Read equal This step continues from
A1. No action required

Main page is displayed
without errors

A3 Write equal Enter the username as
‘snort’ and password as
‘‘<snort password>’

Main page is displayed
without errors.

A4 Connect down Click on the “Go” button. Connection successful. The
main page will be
displayed.

A5 Read down This step continues from
A1. No action required

Main page is displayed
without errors

A6 Write down Click on “Update Alert
Cache” under “Alert
Information Cache” in the
SIM_UNCLASSIFIED
section.

Main page is displayed with
error message: “Database
ERROR: server closed the
connection unexpectedly.”

A7 Connect up Enter the username as
‘snort’ and password as

Connection unsuccessful.
The following error

 77

‘‘<snort password>’ message is displayed “Error
(p) connecting to DB:
snort@192.168.0.140:9998”

A8 Incorrect
parameters

Enter the username as
‘snort’ and password as
‘<snort password>’

Connection unsuccessful.
The following error
message is displayed “Error
(p) connecting to DB:
snort@192.168.0.140:9998
(The error page may take a
while to load)

For the exception test case, launch the Fedora 12 VM. Login with

username ‘Student’ and password ‘<Student password>’. Open a terminal

and navigate to /usr/local/pgsql/bin.

cd /usr/local/pgsql/bin

Perform the test case by typing the following in the prompt.

./psql –h 192.168.0.140 –p 9999 –U snort

and

./psql –h 192.168.0.140 –p 9998 –U snort

Both commands should return the result “psql: server closed the

connection abnormally before or while processing the request.

B. BASE TEST PROCEDURES

The test procedures are as follows:

1. At the STOP 7 prompt, navigate to /home/http/htdocs/ids_demo.

 cd /home/http/htdocs/ids_demo

2. In the same directory, overwrite the ‘base_conf.php’ configuration

file with ‘base_config.php.mysea’.

 cp base_conf.php.mysea base_conf.php

 78

3. On the TPE1 VM, click on the ‘SAR’ button in the TPE window and

enter the command ‘sl’. Enter ‘SIM_UNCLASSIFIED’ for the

session level.

4. Click the ‘SAR’ button again and enter the command ‘run’. Wait for

the “Run command completed” message to be displayed.

5. On the Windows XP VM, launch the Internet Explorer web browser.

6. Browse to the MYSEA Server page at

http://mlsserver.cisrlabmlstestbed1.com. The advisory label

displayed should be ‘SIM_UNCLASSIFIED’.

7. Browse to the BASE login page at:

 http://mlsserver.cisrlabmlstestbed1.com/ids_demo/index.php

8. Perform the actions listed in Test C1 to C3. Close the web browser

after performing the actions.

9. On the TPE1 VM, click on the ‘SAR’ button in the TPE window and

enter the command ‘sl’. Enter ‘SIM_SECRET’ for the session

level.

10. Click the ‘SAR’ button again and enter the command ‘run’. Wait for

the “Run command completed” message to be displayed.

11. On the Windows XP VM, launch the Internet Explorer web browser.

12. Browse to the MYSEA Server page at

http://mlsserver.cisrlabmlstestbed1.com. The advisory label

displayed should be ‘SIM_SECRET’.

13. Browse to the BASE login page at:

 http://mlsserver.cisrlabmlstestbed1.com/ids_demo/index.php

14. Perform the actions listed in Test C4 to C7.

 79

15. Ensure that both the SIM_UNCLASSIFIED and SIM_SECRET

checkboxes are checked and click on the “Go” button. Perform

action listed in Test C8.

16. Click on the ‘Home’ link. Perform action listed in Test C9.

17. Close the web browser after performing the actions.

Test
ID

Test Type Action Expected Result

C1 Login Display at
SIM_UNCLASSIFIED
level

No action required Advisory label of
SIM_UNCLASSIFIED
is displayed. There is
also only one option
displayed for security
level selection.

C2 Login at

SIM_UNCLASSIFIED
level

Login with username
‘snort’ and password
‘<snort password>’

Login Successfully.

The main page is
displayed with the
advisory label of
SIM_UNCLASSIFIED.
There is also only one
option displayed for
security level
selection. Advisory
labels are placed at
the start and end of
the displayed IDS
data section.

C3 Page Navigation for

SIM_UNCLASSIFIED

Click on a link on the
page.

A new page is
displayed on the same
Window, showing the
query results of the
SIM_UNCLASSIFIED
database. Advisory

 80

labels are placed at
the start and end of
the IDS data section

C4 Login Display at
SIM_SECRET level

No action required Advisory label of
SIM_SECRET is
displayed. There are
also only two options
(SIM_UNCLASSIFIED
and SIM_SECRET)
displayed for security
level selection.

C5 Login at
SIM_SECRET

Login with username
‘snort’ and password
‘<snort password>’

Login Successfully.
Main page is
displayed.

Advisory Label of
SIM_SECRET is
displayed

C6 Data consolidation Ensure that both the
SIM_UNCLASSIFIED
and SIM_SECRET
checkboxes are
checked and click on
the “Go” button.

Both checkboxes
remain checked.
Advisory labels for
SIM_UNCLASSIFIED
and SIM_SECRET
data are placed at the
start and end of each
IDS data section.

C7 Lower level data only Ensure that only the
UNCLASSIFIED
checkbox is checked
and click on the “Go”
button.

The
SIM_UNCLASSIFIED
checkbox remains
checked. Only the
SIM_UNCLASSIFIED
data is displayed and
Advisory labels for
SIM_UNCLASSIFIED
data are placed at the
start and end of the

 81

IDS data section.

C8 Page Navigation at

SIM_SECRET level

Click on a link in the
SIM_SECRET section
of the data.

The resulting page will
be displayed in the
same window,
showing only the
SIM_SECRET data.

C9 Page Navigation at

SIM_UNCLASSIFIED

Click on a link in the
SIM_UNCLASSIFIED
section of the data.

The resulting page will
be displayed in the
same window,
showing only the
SIM_UNCLASSIFIED
data.

The test procedures for the second set of tests are as follows:

1. At the STOP 7 prompt, navigate to /home/http/htdocs/ids_demo.

 cd /home/http/htdocs/ids_demo

2. In the same directory, overwrite the ‘base_conf.php’ configuration

file with ‘base_config.php.direct’. The IP addresses and port

numbers are configured to connect to the IDS databases directly.

 cp base_conf.php.direct base_conf.php

3. On the TPE1 VM, click on the ‘SAR’ button in the TPE window and

enter the command ‘sl’. Enter ‘SIM_SECRET’ for the session

level.

4. Click the ‘SAR’ button again and enter the command ‘run’. Wait for

the “Run command completed” message to be displayed.

5. On the Windows XP VM, launch the Internet Explorer web browser.

6. Browse to the MYSEA Server page at

http://mlsserver.cisrlabmlstestbed1.com. The advisory label

displayed should be ‘SIM_SECRET’.

 82

7. Browse to the BASE login page at:

 http://mlsserver.cisrlabmlstestbed1.com/ids_demo/index.php

8. Perform the actions listed in Tests D1 and D2.

9. On the STOP 7 VM, replace the ‘base_conf.php’ with

‘base_conf.php.wrong’.

 cp base_conf.php.wrong base_conf.php

10. On the Windows XP VM, return to the BASE login page. Perform

the action list in Test D3. Close the web browser when done.

11. On the STOP 7 VM, restore the ‘base_conf.php’ to the original

settings.

 cp base_conf.php.mysea base_conf.php

Test
ID

Test Type Action Expected Result

D1 Connect equal Ensure that only the

SIM_SECRET

checkbox is checked.

Login with username

‘snort’ and password

‘<snort password>’

Advisory label of

SIM_SECRET is

displayed.

The SIM_SECRET IDS

data is displayed on the

main page.

D2 Connect down Uncheck the

SIM_SECRET

checkbox, check the

SIM_UNCLASSIFIED

checkbox, and click on

the “Go” button

Advisory label of

SIM_SECRET is still

displayed. An error

message showing that it

cannot connect to the

SIM_UNCLASSIFIED

database is displayed.

 83

D3 Incorrect

parameters

Login with username

‘snort’ and password

‘<snort password>’

An error message

showing that it cannot

connect to the database is

displayed.

C. ACCEPTANCE TEST PROCEDURES

The test procedures for the acceptance tests are as follows:

1. Connect the TPE2 VM

 a. Login as ‘root’, password is ‘<root password>’

 b. Open a terminal window (located on desktop)

 c. Change directory to /root/mysea/bin

 cd /root/mysea/bin

 d. Restart DSS configuration

 ./dss_restart

 e. Register DSS Client:

 ./dss_client 192.168.0.140

 f. Open another terminal window and type

 cd /root/mysea/bin

 g. Start the TPE

 ./tcbe.py

 h. Click on the ‘SAR’ button

 i. Enter ‘mdemo2’ as the user name

 j. Enter ‘<mdemo2 password>’ as the password

 k. Click on the ‘SAR’ button. Enter the command ‘sl’

 84

 Enter session level as ‘SIM_UNCLASSIFIED’

 l. Click on ‘SAR’ button. Enter the command ‘run’. Wait for the

 “RUN command completed” message to be displayed.

2. Connect the TPE3 VM. The steps are the same as in Step 1 except

at the following steps.

 i. Enter ‘cudemo’ as the user name

 j. Enter ‘<cudemo password>’ as the password

 k. Click on the ‘SAR’ button. Enter the command ‘sl’

 Enter session level as ‘SIM_SECRET’

3. On the Windows XP VM, launch the Internet Explorer web browser.

4. Browse to the MYSEA Server page at

http://mlsserver.cisrlabmlstestbed1.com.

5. Browse to the BASE login page at:

 http://mlsserver.cisrlabmlstestbed1.com/ids_demo/index.php

6. Login with username ‘snort’ and password ‘<snort

password>’.

7. Ensure that both the SIM_UNCLASSIFIED and SIM_SECRET

buttons are checked and click on the “Go” button. Both sets of IDS

data should be displayed on the web page.

8. Generate traffic on the IDS Wakeup: Debian4.0 – idswakeup VM

 a. Generate alert traffic for the SIM_UNCLASSIFIED network

 idswakeup 192.168.100.50 192.168.100.140

 b. On the web browser in the Windows XP VM, perform action

 listed in Test E1. Return to the BASE main web page when done.

 c. Generate alert traffic for the SIM_SECRET network

 85

 idswakeup 192.168.101.50 192.168.101.140

 d. Perform action listed in Test E2.

9. Close the web browser on the Windows XP VM.

10. On the TPE1 VM,

 a. Click on the ‘SAR’ button. Enter the command ‘sl’

 Enter session level as ‘SIM_UNCLASSIFIED’

 b. Click on ‘SAR’ button. Enter the command ‘run’. Wait for the

 “RUN command completed” message to be displayed.

11. Repeat step 3 to 6, then repeat step 8a.

12. Perform action listed in Test E3. Close the browser when done.

13. Repeat step 10 to 11. Enter session level as ‘SIM_SECRET’ in step

10a. In step 11, repeat step 8c instead of 8a.

14. On the Windows XP VM, perform the action listed in Test E4.

15. On both the two Knoppix Client VMs, launch the Firefox web

browser. Repeat Steps 4 to 6.

16. Perform action listed in Test E5.

Test
ID

Test Type Action Expected Result

E1 Updates to
SIM_UNCLASSIFIED
IDS database while
logged in at session
level of
SIM_SECRET

Refresh web page.
To see if there are
updates to the
SIM_UNCLASSIFIED
IDS database, click
on the “Cache &
Status” link at the
bottom of the web
page.

The SIM_UNCLASSIFIED
section should display the
IDS data that is not
updated.

When the “Cache &
Status” link is clicked, the
value for total number of
events should be higher

 86

than that of the event
cache.

E2 Updates to
SIM_SECRET IDS
database while
logged in at session
level of
SIM_SECRET

Refresh web page The SIM_SECRET
section should display the
updated IDS data.

E3 Updates to
SIM_UNCLASSIFIED
IDS database while
logged in at session
level of
SIM_UNCLASSIFIED

Refresh web page The SIM_UNCLASSIFIED
section should display the
updated IDS data.

E4 View the now
updated
SIM_UNCLASSIFIED
data while logged in
at session level of
SIM_SECRET

Login. Ensure that
the
SIM_UNCLASSIFIED
checkbox is checked
and click on the “Go”
button.

The SIM_UNCLASSIFIED
section should now
display the updated IDS
data.

E5 Multiple clients
access

View main web page Client 1 (Windows XP)

SIM_UNCLASSIFIED and
SIM_SECRET data are
displayed.

Client 2 (Knoppix)

Only
SIM_UNCLASSIFIED
data is displayed.

Client 3 (Knoppix)

Same as Client 1

 87

APPENDIX D. TEST RESULTS

This appendix presents the results of the development and acceptance

tests performed in Appendix C.

A. DEVELOPMENT TEST RESULTS

This section covers the development test results for PGPool-II and the

BASE application.

1. PGPool-II Test Results

The test results for PGPool-II are as follows:

Test
ID

Test Type Expect Result Result (Pass/Fail)

A1 Connect equal Connection successful. The main

page will be displayed.

Pass

A2 Read equal Main page is displayed without

errors

Pass

A3 Write equal Main page is displayed without

errors.

Pass

A4 Connect down Connection successful. The main

page will be displayed.

Pass

A5 Read down Main page is displayed without

errors

Pass

A6 Write down Main page is displayed with error

message: “Database ERROR:

server closed the connection

unexpectedly.”

Pass

A7 Connect up Connection unsuccessful. The Pass

 88

following error message is

displayed “Error (p) connecting to

DB: snort@192.168.0.140”

A8 Incorrect

parameters

Connection unsuccessful. The

following error message is

displayed “Error (p) connecting to

DB: snort@192.168.0.140:9998

(The error page may take a while

to load)

Pass

The result for the exception test case is as follows:

Test
ID

Test Type Expected Result Result (Pass/Fail)

B1 Unauthorized

connection

Connection unsuccessful Pass

2. BASE Test Results

The results for the first test suite of BASE are as follows:

Test
ID

Test Type Expected Result Result (Pass/Fail)

C1 Login Display at
SIM_UNCLASSIFIED
level

Advisory label of
SIM_UNCLASSIFIED is
displayed. There is also
only one option displayed
for security level selection.

Pass

C2 Login at

SIM_UNCLASSIFIED
level

Login Successfully.

The main page is
displayed with the advisory
label of

Pass

 89

SIM_UNCLASSIFIED.
There is also only one
option displayed for
security level selection.
Advisory labels are placed
at the start and end of the
displayed IDS data
section.

C3 Page Navigation for

SIM_UNCLASSIFIED

A new page is displayed
on the same Window,
showing the query results
of the
SIM_UNCLASSIFIED
database. Advisory labels
are placed at the start and
end of the IDS data section

Pass

C4 Login Display at
SIM_SECRET level

Advisory label of
SIM_SECRET is
displayed. There are also
only two options
(SIM_UNCLASSIFIED and
SIM_SECRET) displayed
for security level selection.

Pass

C5 Login at
SIM_SECRET

Login Successfully. Main
page is displayed.

Advisory Label of
SIM_SECRET is displayed

Pass

C6 Data consolidation Both checkboxes remain
checked. Advisory labels
for SIM_UNCLASSIFIED
and SIM_SECRET data
are placed at the start and
end of each IDS data
section.

Pass

C7 Lower level data only The SIM_UNCLASSIFIED
checkbox remains
checked. Only the

Pass

 90

SIM_UNCLASSIFIED data
is displayed and Advisory
labels for
SIM_UNCLASSIFIED data
are placed at the start and
end of the IDS data
section.

C8 Page Navigation at

SIM_SECRET level

The resulting page will be
displayed in the same
window, showing only the
SIM_SECRET data.

Pass

C9 Page Navigation at

SIM_UNCLASSIFIED

The resulting page will be
displayed in the same
window, showing only the
SIM_UNCLASSIFIED
data.

Pass

The results for the second test suite of BASE are as follows:

Test
ID

Test Type Expected Result Result (Pass/Fail)

D1 Connect equal Advisory label of SIM_SECRET is
displayed.

The SIM_SECRET IDS data is
displayed on the main page.

Pass

D2 Connect down Advisory label of SIM_SECRET is
still displayed. An error message
showing that it cannot connect to
the SIM_UNCLASSIFIED
database is displayed.

Pass

D3 Incorrect
parameters

An error message showing that it
cannot connect to the database is
displayed.

Pass

 91

B. ACCEPTANCE TEST RESULTS

The acceptance test results are as follows.

Test
ID

Test Type Expected Result Result (Pass/Fail)

E1 Updates to
SIM_UNCLASSIFIE
D IDS database
while logged in at
session level of
SIM_SECRET

The SIM_UNCLASSIFIED
section should display the
IDS data that is not updated.

When the “Cache & Status”
link is clicked, the value for
total events should be
higher than that of the event
cache.

Pass

E2 Updates to
SIM_SECRET IDS
database while
logged in at session
level of
SIM_SECRET

The SIM_SECRET section
should display the updated
IDS data.

Pass

 Updates to
SIM_UNCLASSIFIE
D IDS database
while logged in at
session level of
SIM_UNCLASSIFIE
D

The SIM_UNCLASSIFIED
section should display the
updated IDS data.

Pass

 View the now
updated
SIM_UNCLASSIFIE
D data while logged
in at session level of
SIM_SECRET

The SIM_UNCLASSIFIED
section should now display
the updated IDS data.

Pass

E3 Multiple clients
access

Client 1 (Windows XP)

SIM_UNCLASSIFIED and
SIM_SECRET data are
displayed.

Pass

 92

Client 2 (Knoppix)

Only SIM_UNCLASSIFIED
data is displayed.

Client 3 (Knoppix)

Same as Client 1

 93

LIST OF REFERENCES

[1] D. E. Bell and L. LaPadula, “Secure computer system: unified exposition
and Multics interpretation,” Technical Report ESD-TR-75-306, Hanscom
AFB, MA: The MITRE Corporation, 1975.

[2] C. E. Irvine, T. D. Nguyen, D. J. Shifflett, T. E. Levin, J. Khosalim, C.
Prince, P. C. Clark, and M. Gondree, "MYSEA: The Monterey Security
Architecture" in proc. Workshop on Scalable Trusted Computing (ACM
STC), Conference on Computer and Communications Security (CCS),
Association for Computing Machinery (ACM), 2009.

[3] T. Tenhunen, “Implementing an Intrusion Detection System in the MYSEA
architecture,” Master’s thesis, Naval Postgraduate School, June 2008.

[4] BAE Systems, Information Assurance XTS-400 Trusted Computer Guard
Datasheet, July 2010.

[5] J. Horn, “IPSec-based dynamic security services for the MYSEA
environment,” Master’s thesis, Naval Postgraduate School, June 2005.

[6] K. L. Ong, T. D. Nguyen, and C. E. Irvine, "Implementation of a multilevel
Wiki for cross-domain collaboration," 3rd International Conference on
Information Warfare and Security (ICIW 2008), Omaha, Nebraska, USA,
pp. 293–304, April 2008.

[7] Snort (2010, May). Available: http://www.snort.org (Accessed: May 2010).

[8] T. Kohlenberg, et. al., Snort IDS and IPS Toolkit, 2007, Burlington, MA:
Syngress Publishing, Inc.

[9] Sourcefire White Paper, “Snort threat components,” 2007. Available:
http://www.sourcefire.com/resources/downloads/secured/snort_threat_co
mponents.pdf, (Accessed: May 2010).

[10] E. Messmer, “Is open source Snort dead? Depends who you ask,”
Available: http://www.networkworld.com/news/2010/072010-is-snort-
dead.html?t51hb (Accessed July 2010).

[11] Basic Analysis Security Engine (2009, May). Available:
http://base.secureideas.net (Accessed May 2010).

[12] BASE 2 (2010, Aug). Available: http://base-ids-gui.sourceforge.net/,
(Accessed October 2010).

 94

[13] PGPool II, Available: http://pgpool.projects.postgresql.org (Accessed
August 2010).

[14] SQL Relay, Available: http://sqlrelay.sourceforge.net/ (Accessed: August
2010).

[15] PL/Proxy, Available: http://pgfoundry.org/projects/plproxy/ (Accessed
August 2010).

[16] MYSEA Database Proxy Prototype Installation Manual, Version 1.0,
November 2010.

 95

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Kris Britton
National Security Agency
Fort Meade, MD

4. John Campbell

National Security Agency
Fort Meade, MD

5. Deborah Cooper

DC Associates, LLC
Reston, VA

6. Grace Crowder
NSA
Fort Meade, MD

7. Louise Davidson
National Geospatial Agency
Bethesda, MD

8. Vincent J. DiMaria
National Security Agency
Fort Meade, MD

9. Rob Dobry
 NSA
 Fort Meade, MD

10. Jennifer Guild

SPAWAR
Charleston, SC

 96

11. CDR Scott Heller
 SPAWAR
 Charleston, SC

12. Dr. Steven King

ODUSD
Washington, DC

13. Steve LaFountain
 NSA
 Fort Meade, MD

14. Dr. Greg Larson
 IDA
 Alexandria, VA

15. Dr. Carl Landwehr

National Science Foundation
Arlington, VA

16. John Mildner

SPAWAR
Charleston, SC

17. Dr. Victor Piotrowski

National Science Foundation
Arlington, VA

18. Jim Roberts
Central Intelligence Agency

 Reston, VA

19. Ed Schneider
 IDA
 Alexandria, VA

20. Mark Schneider

NSA
Fort Meade, MD

21. Keith Schwalm

Good Harbor Consulting, LLC
Washington, DC

 97

22. Ken Shotting
NSA
Fort Meade, MD

23. Dr. Ralph Wachter
 ONR
 Arlington, VA

24. Dr. Cynthia E. Irvine
 Naval Postgraduate School
 Monterey, CA

25. Thuy D. Nguyen
 Naval Postgraduate School
 Monterey, CA

26. Dr. Yeo Tat Soon
 National University of Singapore (NUS)
 Singapore

27. Tan Lai Poh
 National University of Singapore (NUS)
 Singapore

28. Kah Kin Ang
 Defence Science & Technology Agency (DSTA)
 Monterey, CA

